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CMB observations today

◮ In any direction in the sky the CMB photons behave like
black-body radiation with a temperature T0.

◮ WMAP discretizes the sky sphere into about a million pixels
and measures the temperature fluctuation in each pixel,

∆T (n̂)

T0
≡

T (n̂) − T0

T0
.

◮ ∆T (n̂) gives ONE realization of a 2 dimensional random field
with variance of order 10−5.

◮ In multipoles:

∆T (n̂)

T0
=

∑

ℓm

aℓmYℓm(n̂), aℓm =

∫

dΩ
∆T (n̂)

T0
Y ∗

ℓm(n̂).



∆T as a random field

◮ Mean:

〈
∆T (n̂)

T0
〉 = 0, 〈aℓm〉 = 0.

◮ Variance:

C (θ) = 〈
∆T (n̂1)

T0

∆T (n̂2)

T0
〉n̂1.n̂2=cos θ , Cℓ =

1

2ℓ + 1

ℓ
∑

m=−ℓ

|aℓm|
2.

If ∆T is Gaussian:

C (θ) =
1

4π

∑

ℓ

(2ℓ + 1)CℓPℓ(θ).

◮ Mean and variance completely characterize the field.

◮ If ∆T is non-Gaussian we need to know all higher moments to
find out its distribution function.



∆T from theory

aℓm can be calculated as:

aℓm = 4π(−i)ℓ
∫

d3k

(2π)3
Φ(~k, ηi )∆ℓ(k, η0)Y ∗

ℓm(k̂),

◮ Φ(~k, ηi ) ≡ Fourier transform of primordial metric
perturbations Φ(~x , ηi ) at sufficiently early time ηi .

◮ ∆ℓ(k, η0) : radiation transfer function.
Determined by the mechanism of creation and the physics
around decoupling epoch and subsequent history.



Computing ∆ℓ(k , η0)

◮ Let f = distribution function for photons.

◮ At sufficiently early time mean free path of photons ≪ Hubble
length, and we can assume there is equilibrium in local
regions, with T fluctuating from region to region about some
average value T0.

◮ Then we can write

f (~x , ~p, η) =
1

ep/T (~x ,p̂,η) − 1
, f (0)(p, η) ≡

1

ep/T − 1
,

with
T (~x , p̂, η) = T0(1 + ∆(~x , p̂, η))

.

◮ f can be thought of as perturbed about f 0 as:

f (~x , ~p, η) = f (0)(p, η) + δf (~x , ~p, η),

assuming only linear perturbations.



Computing ∆ℓ(k , η0)
δf (~x , ~p, η) can be related to ∆(~x , p̂, η) as

δf (~x , ~p, η) = −p
∂f 0

∂p
∆(~x , p̂, η).

◮ Time evolution of f can be obtained via Boltzmann equation :

df

dt
= C [f ]

C [f ] = collision term.

◮ This translates into a first order equation for ∆(~x , p̂, η) with
all the interactions going in as the source terms.

◮ Then we do the following:
◮ Fourier transform the ~x dependence.
◮ Define µ ≡ k̂ .p̂ and transform to multipoles ℓ.
◮ Integrate in time.

◮ The final result is ∆ℓ(k, η0). Computed by publicly available
codes : CMBFAST, CAMB.



Initial conditions Φ(~k, ηi) : inflation

◮ Inflation tells us Φ(~k, ηi ) is a random field since it comes from
vacuum fluctuations of inflaton.

◮ Variance given by inflationary power spectrum:

PΦ(k) ∼ 〈ΦkΦk〉 =
A0

k3

(

k

k0

)ns−1

.

◮ Hence by studying the properties of ∆T (n̂) we are ‘directly’
probing properties of the inflaton field.



How can ∆T be non-Gaussian ?

aℓm can be non-Gaussian due to :

1. non-linear transfer function ∆ℓ(k, η0).
◮ Expected to be very small since linear perturbation theory has

proved to be a very good approximation.

2. Or non-Gaussian Φ(k) :
◮ Inflationary perturbation theory when treated to non-linear

order predict deviation of Φ(k) from Gaussianity. True of ALL
models. Can express deviation as:

Φ = ΦG + ∆Φ,

∆Φ ≪ ΦG .

◮ The amount and the functional form of deviation is model
dependent. Detailed knowledge can discriminate between
different models.



Prediction of ∆Φ from inflation in Fourier space
Second order correction to ΦG is of order ∼ (ΦG )2. [Salopek &

Bond (1990)]

3-point function :

〈Φ(~k1)Φ(~k2)Φ(~k3)〉 = (2π)3 δ3(~k1 + ~k2 + ~k3) F (k1, k2, k3).

◮ Different models predict different magnitude and shape of
F (k1, k2, k3).

4-point function :

〈Φ(~k1)Φ(~k2)Φ(~k3)Φ(~k4)〉 = (2π)3 δ3(~k1+~k2+~k3+~k4)) H(k1, k2, k3, k4).

◮ Different models predict different magnitude and shape of
H(k1, k2, k3, k4).



Prediction of ∆Φ from inflation in configuration space

◮ Schematically

Φ(~x) = ΦG (~x)+

∫

d3y d3z K (~y ,~z)ΦG (~x−~y)ΦG (~x−~z)+. . . .

◮ Consider the simplified ansatz

Φ(~x) = ΦG (~x) + fNL

(

(ΦG (~x))2 − 〈(ΦG )2〉
)

+ . . .

◮ Characterized by non-linearity parameter fNL.
◮ Local since the non-linear contributions depend only on same

spatial point.

◮ fNL is very well studied theoretically and observationally. The
tightest constraint from WMAP observation so far

−4 < fNL < 80 (95%CL).

Smith and Zaldariagga (2009)



Beyond fNL

We can write Φ(~x) to third order as:

Φ(~x) = ΦG (~x) + fNL

(

(ΦG (~x))2 − 〈(ΦG )2〉
)

+ gNL(Φ
G (~x))3 + . . .

◮ Becomes relevant if gNL can be relatively large.

◮ Several recent works have shown that in curvaton models or
multibrid models or ekpyrotic scenario it can happen that fNL

is small or even zero while gNL can be large ∼ O(105).

Allen,Grinstein & Wise (1987)
Sasaki, Valiviita & Wands (2006), Byrnes, Sasaki & Wands (2006),
Enqvist & Takahashi (2008), Huang (2008), PC & Huang (2009);
Sasaki (2008), Huang (2009);

Renaux-Petel (2009).

◮ fNL can be zero dues to symmetry such as Φ → −Φ or special
cancellations of terms.



Simulating non-Gaussian maps

Why is it important :

◮ it is just solving the time evolution of the temperature
fluctuations and hence understanding what theory is
predicting.

◮ more importantly, the simulations can be used as testbeds to
study what we should be looking for in the observational data.

◮ Numerically highly non-trivial, need fast method.

P.C and Changbom Park, astro-ph/0908.1696 [astro-ph.CO]



Simulating non-Gaussian maps

Liguori, Mattarese & Moscardini (2003)

Rewrite aℓm as real space integral

aℓm =

∫

dr r2Φℓm(r)∆ℓ(r)

where

∆ℓ(r) ≡
2

π

∫

dk k2 ∆ℓ(k)jℓ(kr) ,

Φℓm(r) ≡
(−i)ℓ

2π2

∫

dk k2 Φℓm(k) jℓ(kr) ,

Φℓm(k) = 4π(i)ℓ
∫

dr r2 Φℓm(r) jℓ(kr) ,

Φℓm(r) split into Gaussian and non-Gaussian parts:

Φℓm(r) ≡ ΦG
ℓm(r) + fNLΦ

NG
ℓm (r) + gNLΦ

NNG
ℓm (r)



Simulating non-Gaussian maps

First generate ΦG
ℓm(r) in (ℓ,m, r) space.

To compute ΦNG
ℓm (r):

◮ Harmonic transform to get ΦG (~r) =
∑

ℓm ΦG
ℓm(r)Yℓm(r̂).

◮ Square at each ~r , subtract variance to get ΦNG (~r).

◮ Inverse harmonic transform to get
ΦNG

ℓm (r) =
∫

dΩΦNG
ℓm (r)Y ∗

ℓm(r̂ ).

To get ΦNNG
ℓm (r) :

◮ Harmonic transform to get ΦG (~r) =
∑

ℓm ΦG
ℓm(r)Yℓm(r̂).

◮ Cube at each ~r to get ΦNG (~r).

◮ Inverse harmonic transform to get
ΦNNG

ℓm (r) =
∫

dΩΦNNG
ℓm (r)Y ∗

ℓm(r̂).



Inputs for the simulations

Physical parameters of ΛCDM:

◮ Used WMAP 5-year best fit parameter values.

◮ Taken ns = 1.

◮ Set fNL = 0.

Resolution:

◮ Used ℓmax = 1100.

◮ Resolves points of angular separation θ ∼ 9.8 arcmin

◮ Used Healpix Nside = 512, corresponds to dividing sphere into
about 3 × 106 pixels.

Normalization

◮ Gaussian maps normalized by CMBFAST.

◮ Non-Gaussian maps normalized by matching with Gaussian
maps at ℓ = 220.



Temperature maps
Full temperature fluctuations:

∆T (n̂) = ∆TG + fNL∆TNG + gNL∆TNNG

Distribution of ∆TNNG about ∆TG :



Maps: Positive gNL

Gaussian map with smoothing FWHM= 7◦:

Non-Gaussian map with gNL = 5 × 106, same smoothing :



Maps: Positive gNL

Gaussian map with smoothing FWHM= 30′:

Non-Gaussian map with gNL = 5 × 106, same smoothing :



Maps : Negative gNL

Gaussian map with smoothing FWHM= 30′:

Non-Gaussian map with gNL = −5 × 106, same smoothing :



One-point PDF : gNL maps

◮ gNL affects the kurtosis.



One-point PDF : fNL maps
Liguori, Mattarese & Moscardini (2003)

◮ fNL affects the skewness.

-400 -200 0 200 400
0

-400 -200 0 200 400

0



Measuring non-Gaussianity

◮ Need observables that are sensitive to non-Gaussianity.

◮ Different statistical tools complement each other and provide
cross checks though their sensitivities may vary.

◮ Defined on harmonic space, pixel (real) space, wavelet
space,. . ..

List a few:

1. Harmonic space observables: 3-point and 4-point function in
multipole space.

2. Real space observables : Minkowski functionals, Pixel
clustering correlation, etc.

3. Wavelet, Needlet bispectrum etc.



Genus: Useful features

◮ Real space quantity ⇒ real world issues such as foreground,
galaxy mask etc., are easy to handle.

◮ Contains information of all correlators since they are global
quantities.

◮ Hence can be more sensitive, compared to measuring
individual N-point functions, to other forms of
non-Gaussianity than purely fNL or purely gNL.



Genus, G

◮ G = number of hotspots - number of cold spots.



Genus, G

◮ Threshold:

ν ≡
∆T/T

σ0
, σ0 =

√

〈
∆T

T

∆T

T
〉.

◮ Then G is given by

G (ν) =
1

2π

∫

C

K ds

C ≡ contour connecting pixels with same ν

K ≡ curvature of C



Genus for Gaussian field

For Gaussian random field:

G = A ν e−ν2

where

A =
1

(2(2π)3/2

∑

ℓ(ℓ + 1)(2ℓ + 1)Cℓ W 2
ℓ

∑

(2ℓ + 1)Cℓ W 2
ℓ

Wℓ = e−ℓ(ℓ+1)θ2
s /2 = Gaussian smoothing kernel ,

θs = smoothing angle.

It is:

◮ independent of the normalization.

◮ depends crucially on the shape of Cℓ.

◮ sensitive to the smoothing scale.



Genus for weakly non-Gaussian field

Upto fNL order :

◮ When the field is weakly non-Gaussian approximate analytic
expressions may be obtained.

◮ Then the G ’s can be expressed as

G = GG + ∆G .

◮ ∆G is known for fNL type non-Gaussianity.
Matsubara (2003), Hikage et al (2006), Hikage et al (2008).

Upto gNL order :

◮ No known approximate analytic expressions upto gNL.

◮ Can be computed directly using simulated non-Gaussian maps.



Genus for gNL

Green represents gNL > 0, red gNL < 0
Values are gNL = ±5 × 105,±106, 2 × 106



∆G functional dependence on gNL

◮ ∆G depends linearly on gNL :



∆G functional dependence on smoothing scale

◮ ∆G increases mildly with smoothing scale, at the scales we
have probed :



Genus for fNL

Hikage, Komatsu and Matsubara (2006)



Comparing gNL and fNL non-Gaussianities

Characteristic fNL gNL

Number of spots if fNL > 0, gNL > 0
increases hot spots and increases both hot
decreases cold spots. and cold spots.
Vice versa if fNL < 0 Vice versa if gNL < 0

Shape of ∆G symmetric anti-symmetric

Dependence on
fNL or gNL linear linear

Dependence on
smoothing strongly dependent mildly dependent



Observables derived from genus

◮ G (ν) at different ν values are strongly (anti-)correlated.

◮ Can think of derived observables which will maximize the
non-Gaussian deviations and also the difference between fNL

and gNL.

◮ They can then be used to compare with observations to
constrain fNL and gNL.



Observables derived from genus

List four observables:

◮

Rcold ≡
Ncold

NG
cold

, Rhot ≡
Nhot

NG
hot

.

Ncold ≡

∫

−ν1

−ν2

dν G (ν), Nhot ≡

∫ ν2

ν1

dν G (ν)

NG
cold ≡

∫

−ν1

−ν2

dν Gfit(ν), NG
hot ≡

∫ ν2

ν1

dν Gfit(ν).

Gaussian : Rcold = 1, Rhot = 1
Choose ν1 = 1, ν2 = 2.5,

If gNL > 0, Rcold < 1, Rcold < 1

If gNL < 0, Rcold > 1, Rcold > 1



Observables derived from genus

◮

Rspots =
Ncold + Nhot

NG
cold

+ NG
hot

Gaussian : Rspots = 1.

If gNL > 0, Rspots < 1

If gNL < 0, Rspots > 1

◮ S0 : ratio of slope of non-Gaussian genus curve to fitted
Gaussian at ν = 0.

If gNL > 0, S0 > 1

If gNL < 0, S0 < 1



Rcold versus Rhot and Rspots versus S0



Functional dependence of Rspots on gNL and smoothing

scale



Summary

◮ Simulated non-Gaussian CMB maps arising from primordial
perturbations upto cubic order.

◮ Studied the statistical nature of the non-Gaussian effects on
the CMB.

◮ Measured genus using the simulations and studied how they
vary as a function of gNL and smoothing scale.

◮ We showed fNL and gNL have very different signatures in the
genus and other derived observables and can be easily
distinguished.

◮ No observational contaminants such as galaxy mask, point
sources, noise, etc were added in this work. Need to include
them to compare with real data.

◮ We are now working on constraining gNL by comparing the
simulations with WMAP 5 year data.


